Enrollment No:	Exam Seat No:	
	Exam Scat No	

C.U.SHAH UNIVERSITY

Summer Examination-2016

Subject Name : Engineering Mathematics - III

Subject Code: 4TE03EMT1 **Branch**: B.Tech(All)

Semester : 3 **Date :** 19/04/2016 **Time :**02:30 To 5:30 **Marks :**70

Instructions:

- (1) Use of Programmable calculator & any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

Q-1 Attempt the following questions:

(14)

- a) One of the Dirichlet's condition is function f(x) should be(a) single valued (b) multi valued (c) real valued (d) None of these
- **b**) Fourier expansion of an odd function f(x) in $(-\pi, \pi)$ has
 - (a) only sine terms (b) only cosine terms (c) both sine and cosine terms
 - (d) None of these
- c) If f(x) = x is represented by Fourier series in $(-\pi, \pi)$, a_0 equals to
 - (a) $\pi/2$ (b) π (c) 0 (d) 2π
- **d**) Laplace transform of e^{2t+3} is

(a)
$$\frac{e^3}{s-2}$$
 (s > 2) (b) $\frac{e^2}{s-3}$ (c) $\frac{1}{s-\log 2}$ (d) $\frac{1}{s-2}$

e) Laplace transform of $t^{\frac{-1}{2}}$ is

(a)
$$\frac{\pi}{\sqrt{s}}$$
 (b) $\sqrt{\frac{\pi}{s}}$ (c) $\frac{\sqrt{\pi}}{s}$ (d) None of these

- f) Inverse Laplace transform of 1 is
 - (a) 1 (b) $\delta(t)$ (c) $\delta(t-1)$ (d) u(t)
- g) The C.F. of the differential equation $(D^3 + 2D^2 + D) = x^2$ is
 - (a) $y = c_1 + (c_2x + c_3)e^{2x}$ (b) $y = c_1 + (c_2 + c_3x)e^{-x}$ (c) $y = c_1 + (c_2x + c_3)e^{x}$
 - (d) None of these
- h) The P.I. of $(D^2 + a^2)y = \sin ax$ is
 - (a) $-\frac{x}{2a}\cos ax$ (b) $\frac{x}{2a}\cos ax$ (c) $-\frac{ax}{2}\cos ax$ (d) None of these
- i) The P. I of (D-a)y = X, (where X = k is constant) equals to

(a)
$$-\frac{k}{a}$$
 (b) $\frac{k}{a}$ (c) ka (d) $-ka$

j) Eliminating arbitrary constants a and b from z = (x + a)(x + b), the partial differential equation formed is

(a)
$$z = \frac{p}{q}$$
 (b) $z = p+q$ (c) $z = pq$ (d) None of these

k) The solution of
$$\frac{\partial^2 z}{\partial x^2} - \frac{\partial^2 z}{\partial y^2} = 0$$
 is

(a)
$$z = f_1(y+x) + f_2(x-y)$$
 (b) $z = f_1(y+x) + f_2(y-x)$ (c) $z = f(x^2 - y^2)$

(d) None of these

1) Particular integral of $(D^2 - D'^2)z = \cos(x + y)$ is

(a)
$$\frac{x}{2}\cos(x+y)$$
 (b) $x\sin(x+y)$ (c) $x\cos(x+y)$ (d) $\frac{x}{2}\sin(x+y)$

m) The order of convergence in Bisection method is

(a) linear (b) quadratic (c) zero (d) None of these

n) The order of convergence in Newton-Raphson method is

(a) 1 (b) 3 (c) 0 (d) 2

Attempt any four questions from Q-2 to Q-8

a) Obtain a cosine series for the function $f(x) = e^x$ in the range (0, l). (5)

b) Evaluate:
$$L^{-1} \left[\frac{2s^2 - 4}{(s+1)(s-2)(s-3)} \right]$$
 (5)

c) Show that the frequency of free vibrations in a closed electrical circuit with inductance L and capacity C in series is $\frac{30}{\pi\sqrt{LC}}$ cycles/minute.

Q-3 Attempt all questions

a) Using convolution theorem, evaluate $L^{-1}\left\{\frac{s^2}{\left(s^2+a^2\right)\left(s^2+b^2\right)}\right\}$. (5)

(14)

b) Solve:
$$(D^4 - 1)y = e^x \cos x$$
 (5)

c) Solve: $\frac{\partial^2 z}{\partial x \partial y} = x^3 + y^3$

Q-4 Attempt all questions (14)

a) Solve: $(D^2 - 2D + 1)y = xe^x \sin x$ (5)

b) Solve:
$$x^2(y-z)p+y^2(z-x)q=z^2(x-y)$$
 (5)

c) Solve: $\frac{\partial^2 z}{\partial x^2} + 3 \frac{\partial^2 z}{\partial x \partial y} + 2 \frac{\partial^2 z}{\partial y^2} = x + y$ (4)

Q-5 Attempt all questions

Solve by the method of variation of parameters: a) **(5)**

(14)

$$\frac{d^2y}{dx^2} + a^2y = \sec ax$$

Find the positive root of $x^3 + 2x^2 + 10x - 20 = 0$ by Newton-Raphson method. b) **(5)**

Solve: $L\left(\frac{e^{-at}-e^{-bt}}{t}\right)$ c) **(4)**

Q-6 Attempt all questions

(14)a) Expand f(x) in Fourier series in the interval $(0,2\pi)$ if **(7)**

$$f(x) = \begin{cases} -\pi, & 0 < x < \pi \\ x - \pi, & \pi < x < 2\pi \end{cases} \text{ and show that } \sum_{r=0}^{\infty} \frac{1}{\left(2r+1\right)^2} = \frac{\pi^2}{8} \ .$$

Using the method of separation of variables, b) **(7)**

solve
$$\frac{\partial \mathbf{u}}{\partial \mathbf{x}} = 2 \frac{\partial \mathbf{u}}{\partial \mathbf{t}} + \mathbf{u}$$
, given $\mathbf{u}(\mathbf{x}, 0) = 6e^{-3\mathbf{x}}$

Q-7 Attempt all questions (14)

The following table gives the variations of periodic current t = f(t) amperes over **a**) **(7)** a period T sec.

t (sec):	0	$\frac{\mathrm{T}}{6}$	$\frac{\mathrm{T}}{3}$	$\frac{\mathrm{T}}{2}$	$\frac{2T}{3}$	$\frac{5T}{6}$	Т
i (A):	1.98	1.30	1.05	1.30	-0.88	-0.5	1.98

Show, by harmonic analysis, that there is a direct current part of 0.75 amp. in the variable current and obtain the amplitude of the first harmonic.

b) **(7)** Using Regula Falsi method, compute the real root of $x \log_{10} x - 1.2 = 0$ correct to

five decimal places.

Q-8 Attempt all questions (14)

Using Laplace transform method, solve **(7) a**)

 $y'' + 3y' + 2y = e^t$, y(0) = 1, y'(0) = 0

Solve: $(D^2 - 1)y = \cosh x \cos x$ **(7)** b)

